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The energy-dissipating motions of frictional surfaces that involve some degree of sliding

are considered, as well as motions without sliding (relative rest or pure rolling) in which
energy may be conserved. It is natural to assume that if the energy influx into the system
is small, the initial motions with sliding become motions without sliding. We know, for
example, that a heavy homogeneous disc rolling and sliding along a rough horizontal
straight line begins to roll without sliding after a finite time; the time ¢ ~ to of the tran-
sient process can be made arbitrarily small if v, (the initial sliding velocity) is sufficiently
small. Do the same phenomena occur with general frictional systems? This paper presents
an investigation of the sufficient conditions under which such phenomena do indeed occur.

1. Let us begin with an example and examine the case of a heavy nonhomogeneous
disc of radius p rolling (and generally sliding) along the rough horizontal x -axis. We
direct the stationary y -axis vertically upweard and construct the radius r from the center
of the disc o to its center of gravity G. Let @ be the angle between this radius and the
y -axis, x the abcissa of the center of the disc, m its mass, jim the central moment of
inertia, v the velocity of the point P of the disc in contact with the x -axis, N the normal
reaction, and R the tangential reaction at the point P. If the velocity v = z° — ¢'p 5= O,
the force R is equal to kN in magnitude and is directed opposite to the velocity v, i.e.

R = ~kN sign v, where k = const is the coefficient of friction. The normal reaction N > 0;
this means that it can only be directed upward. Denoting the kinetic energy by T, the force
function by U, and the virtual work of the tangential force by § 4, we obtain

o7 = m 22 + 259rcosq + (P + )92, U= — mgreose
84 = — kN sign v (§z — pdg)
We construct the equations of motion
m (z” <+ @ r cos @ — @%r sin ¢) = — kiV sign v, (1.1)
m (z"rcos @ + @2 + @7/ = kNp sign v + mgr sin@

To determine N we make use of the theorem on the motion of the center of mass along
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the y-axis,
m (@ rsing + @ cos ¢)= mg — N a.

Multiplying the first equation of system (2.1) by —r €05 @, and adding the second equa-
tion to the result, we have
mj?

[ +ak(p+ rcos@)l N = (g+ ¢2r cos ) Fsintg L7

(1.3)
a = rsing (r¥sin?¢ -+ ;)71
It is clear from this that N is independent of x ', and therefore of the absolute value
of v, and depends solely on sign v (we have written 1 instead of sign v in the expression
in square brackets). It is also a simple matter to point out initial conditions and a mass
distribution such that ¥V is negative. In this case we encounter Painlevé’s paradox {1], and
the initial hypotheses turn out to be insufficient to determine the motion. But if the latter
case isnot encountered, then, substituting N from equation (1.3) in equations (1.1), we
obtain the equations of motion. The motion will proceed according to these equations until

such time as ¢ == &' — @'p becomes 0.

Let us take this as the initial instant ¢t = 0 and assume that what follows is pure roll-
ing. In this case the system loses one degree of freedom and is subject to the integrable

nonholonomic constraint z’ == ¢'p. The equation of motion becomes
@ (r* 4+ p* + 2 4 2prcosg) — @Pprsing = grsing (1.4)

The theorem on the motion of the center of mass yields equations for determining R

and N, {(the tangential and normal reactions for pure rolling),

9" (p 4+ recos@) —@2rsing = H/m
g rPgteosy F grsing WV, m

Solving them, we have

rsin@ (g -+ ¢p) (p + rcosq)

r2 -k g% - p? o+ 2prcos@

R/m= — @ ?rsing@
(1.5)
r*sin’ g (g 1 9p)
2 24 p? + 2prcos@
If the inequality l R | < kN, is satisfied at the initial instant for @ = @4, ¢ = @y

the assumption as regards rolling is valid, and motion occursin accordance with equation

—rgt+g

Ny/m=

(1.4) until such time as the inequality | R | <7 kN, is violated.

It is natural to expect that any close initial conditions ¢4 -+ AQ, @y + AQ’, ve# 0
corresponding to small | Aq{, | A¢'1, | 1|, lead to motion in which sliding soon vanishes

and rolling continues for some time thereafter (possibly for an infinite period).

As is shown below, such is always the case if the inequality | R | < kN is satisfied
in addition to | R | < kN, at the initial instant; the N appearing in the former inequality is

taken from formula (2.3) for small values of | A@[, | Aggl, | vyl

We denote the limiting value of N as Ay — 0, Agp"— 0, v4— 0+ 0 by N,, the limit-
ing value of N as Aq¢ — U, A@"— 0, rg-> 0 — O, by N;, and lim N, as A¢ — 0, Ags — 0.
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by No. Formulas (1.3) and (1.5) indicate that they may all be distinct. In addition, ¥, or
N, may turn out to be negative for positive No. This situation leads to a paradox. In the
more complicated cases it may be that the equations similar to (1.3) and (1.5) have several
solutions. Since analysis of such general equations is quite a complex matter, we impose
limitations 2.1,....2.4, on the properties of their solutions and are then able to proceed

with our proof.

Such problems invariably arise inthe investigation of the motion of a solid object on a
rough surface. In the absence of sliding we have the familiar nonholonomic problem. The
solutions of this problem afford a good description of the actual state of affairs only if any
small sliding motion due to causes not considered vanishes after a short time.

2. Let us consider a mechanical system subject to stationary holonomic ideal con-
straints with the holonomic coordinates ¢, . .., ¢,,;,;» and with nonholonomic stationary
(aAij/ ot = Q) ideal constraints

Ag@p + ..o+ A nitak Tnatsx = 0 (s=1,...,k
with the possible displacements defined by
Agdgy + oo+ Ay kB9 = 0 (s=1,...,%
Further, let the system be subject to the liberating constraints with dry friction
Iy SO e vy gp SO

If these inequalities become equations, the bodies or points of the system slide along
the bodies of the system or external bodies; the frictional force is proportional to the
normal reaction N; > 0 and is directed opposite to the relative velocity of the sliding mo-
tion (N; > 0 if the bodies exert pressure on one another). At each point of contact on one
of the bodies we fix a triplet of axes with the z; -axis directed along the exterior normal
and the x; - and y; -axes rendering the triplet right-handed and rectangular. Then the work
performed by the reaction N; and the frictional force over a possible displacement
8z, dy;, Oz of a point onthe second body relative to this system is

Nz kN”v|6 kN,[v| v;

where v;, , v;, are the projections of the relative sliding velocity v; on the x; - and
y; -axes and k; > O is the coefficient of friction.

Let g,y = .+« = @y = qn+1 = ... = g1 = 0 be the initial conditions. We con-
sider the complete system of nonholonomic variables

Uiy o« oy Upy vn+1 Qﬂ+17 RS U'n+l - qn+l

Letv;,, Viy» Vig be the components of the possible relative velocity of a point on one
of the bodies that are in contact relative to the system x;, y;, 2; ; these components may

be expressed in terms of vy, .. ., v, as

o= .. 1 1 = 2 2
Vig = Qylor oo b0 gt vy = o o

3 3
Vig = 03Uy e 8 TaPng
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We note that the same formulas may be used to express the displacements 8:;‘-, By;,

Osx; in terms of the possible displacements v,07, ..., v,,;07.

At ¢ = 0, let there be some zero velocities v, , = ... = Vpo = 0,among the initial
relative sliding velocities vy, . . ., v, all the rest of the latter being non-zero. Also, let
Riz, Ry (i =v + 1, ..., p)be the projections of the tangential reactions on the x; - and
y; -axes. Denoting the energy of accelerations of the system by

n+l n+l
S = 2 aijvivj + 2 b = 83+ 8
ij=1 =1

and the stationary and continuous generalized forces by Q,, . . ., Qn,; we find that the
equations of motion become

08,y - 04 vix P ayv4y

== _—b;+ Q4 — N, =T 6w a.sN.)

9v; i+ Q El ( U Vo d F o i)+ (2.1)
+ 2 (@Ris + 0gtRy + 0tV = P;

i=v41

Denoting the right-hand sides of this system by P,- , we determine ¢;", vix', vy from
these equations and set the former equal to zero,

g ="MP1+ .-+ Tnsl,iPnet = 0 G=n+1,..,n+1D
Vi = 01PL + . . + Spp,iPrit =0 (i=v+1,...,p 2.2)
viv.=el:ipl+"'+en+l,5Pn+l:0 G=v+1,...,p

The resulting system of equations enables us to determine the normal reactions and
frictional forces.

Now let 5* = S, where g¢;", v;x', v;)’; are set equal to zero; let Q,*, . .., Q;* be the
generalized forces that correspond to the independent nonholonomic variables r,’, . . ., v’
in a system subject to the additional ideal constraints ¢ = v;, = v), = 0 (some of which

may be nonholonomic).

Omitting the primes in the coefficients a;;V, a;;*’ we write the equations

asg*

v a.»lv. aA-iv.
o = bj" £ th+2 (_ B:N; M) (2.3)
J i=1

‘/-Vix2 + Viy2
Let us also introduce some additional hypothesis about the properties of the reaction,
L 21 (Nn 5B ~qi" Q‘l) =...=¢@ =0 (2.4)

An example of sach a hypothesis is the supposition that a heavy homogeneous stool
subjected to the action of forces applied in the rough plane surface of its support exerts
equal normal pressures on that surface at all four of its points of support.

Let us assume that system (2.2) — (2.4) possesses the following properties:

2.1, All the normal pressures N,, . . ., N_ can be set negative. This means that under
the given initial conditions system (2.2), (2.4fdoes not imply that a normal reaction neces-
sarily arises at some point of contact.
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2.2, System (2.2), (2.4) enables one to determine unambiguously all the linear combi-
nations of Ny, . . ., N,, that occur on the right-hand sides of equations (2.3).

2.3. On the basisof any system NV ,, . . ., Vit is possible to choose the tangential
reactions R, Riy such that (2.2), (2.4) and the inequalities
kiN; > VR + Ry -+ c (¢ = const > 0) (2.5)

are jointly satisfied.

Inequalities (2.5) signify that the absolute value of the tangential reactionis less than
that of the maximum possible reaction.

If conditions 2,1, 2.2, 2.3 are satisfied under the given initial conditions, subsequent
motion occurs in accordance with equations (2,3) taken in conjunction with the equations of

the nonholonomic constraints of the initial system and the equations
an:...:an:O, Vig = vy = 0 G=~v+1,...,p

2.4, Let us assume now that systems (2.2) — (2.4) which follow from the definition of
motion also satisfy conditions 2.1, 2.2, 2.3 for any ;) = ¢;)" — q;0, @) = 950" — 730"
sufficiently small in absolute value but not so small as to make all the v

i1 - o Vo
vanish. In addition, the reactions

vepr - - Np's corresponding to these initial conditions

satisfy the inequalities
KEN{> VR &+ Ry + ¢

where R;, , Riy are the reactions corresponding to the initial conditions as regards ¢;,, ¢;,".

All of the foregoing limitations guarantee the existence of some region
N+ D at<H

such that if any of the sliding velocities ¢ ., I'y are set equal to zero at ¢t =0 in H,

22 UM
they will remain equal to zero at least until such time as the motion goes heyond the region
H. 1f assumptions 2.1, .. ., 2.4 are fulfilled, we say that the variables v;,, v;, (i =

v+ 1,..., p) , are at an interior point of the stagnation zone.

Let us consider a system of initial conditionsunder which none of the relative veloci-

’

ties v, ., ..., v, is equal to zero and take as our v\, . . ., Vn' some internally indepen-
dent system chosen from amoung viy, v;, (i = v -+ 1, ..., p). Computing ", . . ., vy
in terms of vy, . . ., vy from the first o equations of system (2.3) and substituting these

expressions into thelast n — ¢ equations, we obtain the following system:
n

v . \ 0
dJ 1 . N : Qi Vix 7 G4j Uiy

PRRRCN Z cijeiv) =gt Z — (hiNi"—_qu———. - ) (2.6)
ST ij=atl i=v41 tx ty

where the sum in the left-hand side is a positive definite quadratic form relative to »; (j =
6+ 1,...,n). This form is the end result of equating to zero the linear forms

n

2
a—v:,—< 2 aijvi'vj') =0 (] = 1. LT ] 0) (2.7)

ij=1
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in the quadratic portion of the energy of the system accelerations
n
Ny o E (Iijl‘i.l’j.
ij=1
Forj=0+ 1, ..., n, the quantities Vig» Vjy can be expressed solely in terms of
Ugipr + + -» Up; this means that frictional forces at points with the subscripts v + 1, ..., p
do not appear in the first 0 equations, and therefore that their right-hand sides depend

continuously on their arguments in the neighborhood of

Vg = oo - v, =0

Thus, upon isolating i (the constant term on the right-hand sides of the equations
obtained by substitution), we can convert these equations to the form (2.6).

The tangential reactions R;_, R; satisfy the equations

ix» Ny
P
Mg ) ('R + a;2R;,) = 0
i=v41
for the initial values
Zio Tigr Voig0 = o0 o= Vo — 0

Multiplying each equation of (2.6) by v °, adding, and taking into account (2.1) and
(2.7), we obtain

d 11 < od
5
dt < 7 cii””’:‘) = D g vt () o —
ij=0-+1 ij=0+1

[x;l b

P
g R e
— N U Vo F vt — Ripvig —Ryyvy)
i=vi1
Noting that the cjj depend solely on the coordinates, we find that this equation may
be represented as

d 1 < v ‘
G5 T evivi=— X Ui Vo + o+ Rig 4 hiy) v + Ry -+ hiy) o)
i=v-+1

where all the Aix' Aiy vanish if z; = 0, ;= 0.

We now show that the region H can always be taken so small that the inequality
P
— 3 Vi Vo + ogf 4 Rig + hix) vix + Riy + M) vi) ] < — O YT
i=v+1
1 n
(TU:T }J CiJUil)j)
ij=0+1

is satisfied everywhere within it.

Let us denote by kN; . the lower bounds of the quantity k¥; and by A;.°, A;,° the
upper bounds of |};, |, | A;, | in the region H. It is clear that no term on the left-hand side
exceeds the expression

- [(kiNiO - }"ixo - A'illn) V”ix2 + viy2 -+ Rixvi.\' -+ Riy viy]
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This expression is negative, provided that
(Riyvix + Riyvi)? < (k;Vyy — hix” — Aiy’)? (Vvixz + vy’
for which it is sufficient that the condition
Ri? + Ry < (kN — Ai® — Ay)?
be satisfied.

This condition is clearly satisfied if (2.4) holds true and the region H is sufficiently

small.

Denoting by — ¥ the negative maximum of the sum

14
D= — 2, [(kNV;® — Ai® — A'iyc’) Vvixz + Ui!/2 + Rixvix + Riy”iu]
‘i=v+1
in the region H which is attained for v.o+1' ..., v,*, and bearing in mind that ® is homo-

geneous relative to velocities, we find that the inequality

TVU§+1+---+ U2

>e )T, (® = const > 0)
Vo vc+1 oo

— 0>

is satisfied everywhere in the region H.

Integrating the inequality .
dT, | dt<—8 V' T,

we obtain
VTc - y/Tco<'_l/29 (¢ —to)

For any region H and any constant A < H we can find a number t* (AH) >0, such that
the time ¢ — ¢, required for the system of initial conditions 2 T2 + 732 <A to leave the
region exceeds t* (AH ). This implies that for all initial conditions for which

V7T, —14,80% (A, H) <0

all v .y U vanish at the end of the time ¢ — t; < t* and subsequent motion proceeds

o+
according to equations (2.3) until the system leaves the region H.

Let us formulate our final conclusions in the form of a theorem.

Theorem. (1) If the portion of the system corresponding to the variables Ugspr = + +» U
is at an interior point of the stagnation zone under certain initial conditions, and if the
region

zxiZ—i—xi'ng, Ugpg =+ o =Up =0

consists entirely of interior points of this zone, then for any A < H it is possible to find a
A;(A,H) such that for any initial conditions, motion from the region

n

v 7 + 7t S S H, E v < h

i=0+1

until emergence from the region H occurs in two stages: in the first stage some of the rela-
tive sliding velocities arenot equal to zero; in the second stage, which begins no later than
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atime t — ¢, = 207! VTcms all sliding velocities remain equal to zero until the motion

leaves the region H.

(2) If the motion g; (¢) beginning under the initial conditions g;4, ¢;, Vot T e
= vy = 0, always remains at an interior point of the stagnation zone andis a

stable solution of system (2.3) in conjunction with the equations ¢,,, ... =¢, ;=
Vggg = +++ = vp = 0 (i.e. if the solution ¢; (¢) is the stable motion of the initial sys-

tem limited by the indicated additional constraints), then any disturbed motion of the initial
system with sliding velocities sufficiently small in absolute value after a finite time inter-
va] becomes the motion of a system subject to additional constraints; the duration of the

transient process tends to zero as Ty — 0.
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