
VANISHING SLIDING MOTIONS OF MECHANICAL SYSTEMS 
WITH DRY FRICTION 

(ISCHEZAIUSliCAIE SKOL’ZAENIIA MEKAANICAESKIKH 

SISTEM S SUKRIM TRENIEM) 

PMM Vol. 29, No. 3, pp 558-563 

G.K. POZHARITSKII 

(Moscow) 

(Received November 2, 1964) 

The energy-dissipating motions of frictional surfaces that involve some degree of sliding 

are considered, as well as motions without sliding (relative rest or pnrc rolling) in which 

energy may be conserved. It is natnral to assume that if the energy influx into the system 

is small, the initial motions with sliding become motions without sliding. We know, for 

example, that a heavy homogeneous disc rolling and sliding along a rough horizontal 

straight line begins’ to roll withont sliding after a finite time; the time t - r,, of the tran- 

sient process can bemadc arbitrarily small if ua (the initial sliding velocity) is sufficiently 

small. Do the same phenomena occur with general frictional systems? This paper presents 

an investigationof the sufficient conditions under which such phenomena do indeed occur. 

1. Let us begin with an cxamplc and examine the case of a heavy nonhomogeneous 

disc of radius p rolling (and generally sliding) along the rough horizontal x-axis. WC 

direct the stationary y -axis vertically upward and construct the radius t from the center 

of the disc o to its center of gravity G. Let cp be the angle between this radius and the 

y-axis, z the abcissa of the center of the disc, m its mass, jrm the central moment of 

inertia, v the velocity of the point P of the disc in contact with the x-axis, N the normal 

reaction, and R the tangential reaction at the point P. If the velocity v = x’ - (p’p # 0, 

the force R is equal to kN in magnitude and is directed opposite to the velocity v, i.e. 

R = -kN sign v, where k = const is the coefficient of friction. The normal reaction N > 0; 

this means that it can only be directed upward. Denoting the kinetic energy by T, the force 

function by CJ, and the virtual work of the tangential force by 6A, we obtain 

2T = m [z’* + 2x‘rp.r cos cp + (9 + j”) (~‘~1, U = - mgrcoscp 

6A = - kN sign v (6x - p&p) 

We construct the equations of motion 

m (2” _t CJJ”~ cos W - ‘p’% sin cp) = - kN sign V, (1.1) 

m (2”~ cos rp + W”rz -+ (p”j2) = lrNp sign v + mgr sin Cp 

To determine N we make uscof the theorem on the motion of the center of mass along 
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the y-axis, 

m (t~,.r sirt cp f @*r cos q)= r>ig - ‘1 !I.‘) 

Multiplying the first equation of system (2.1) by -r COST, and adding the second equa- 

tion to the result, we have 

a = r sin cp (9 sin2 cp .+- jr)-r 

It is clear from this that N is independent of x *, and therefore of the absolute value 

of v, and depends solely on sign v (we have written f instead of sign v in the expression 

in square brackets). It is also a simple matter to point out initial conditions and a mass 

distribution such that N is negative. In this case we encounter Painlevg’s paradox [l], and 

the initial hypotheses turn out to be insufficient to determine the motion. Hut if the latter 

case isnot encountered, then, substituting N from equation (1.3) in equations (l.l), we 

obtain the equations of motion. The motion will proceed according to these equations until 

such time as c = z’ - (~‘p becomes 0. 

L,et us take this a~ the initial instant t = 0 and assume that what follows is pure roll- 

ing. In this case the system loses one degree of freedom and is subject to the integrable 

nonholonomic constraint .z’ == (~‘p. The equation of motion becomes 

rp” (+ + ~2 + jr + 2pr cos tp) - cp+r sin cp = gr sin Cp (1.4) 

The theorem on the motion of the center of maas yields equations for determining R 

and N, (the tangential and normal reactions for pure rolling), 

I! I r,, =- 
r sin cp (g --t q”2P) (P t r COS 9) 

r2 -1 1” -7. p2 f 2pr COS Cp 

_ ‘p.2r sin (r 

(1.5) 

If the inequality 1 R 1 < kN, is satisfied at the initial instant for up ~= ‘pe, q” r Q,’ 

the assumption as regards rollin g is valid, andmotion occursin accordance with equation 

(1.4) until such time as the inequality 1 I? 1 < k.V, is violated. 

It is natural to expect that any close initial conditions ‘~0 1-- Aq, ~a. $- AT’, v,, f 0 

corresponding to small 1 1~ /, I A(I” !, / t‘. I, lead to motion in which sliding soon vanishes 

and rolling continues for some time thereafter (possibly for an infinite period). 

4s is shown below, such is always the case if the inequality 1 R 1 < kN is satisfied 

in addition to / R ( < kh’, at the initial instant; the N appearing in the former inequality is 

taken from formula (2.3) for small values of 1 AT I, I A(to I, ! 1’” !. 

We denote the limiting value of N as AT - 0, Aq’ - 0, ~‘e ---f 0 + 0 by N,, the limit- 

ing value of N as Atf -- (I, Arpp’ --f (I, ~‘e -+ 0 - 0, by N,, and lim N, as Aq --f 0, Acpe’ ---f U. 
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by N,. Formulas (1.3) and (1.5) in d icate that they may all be distinct. In addition, N, or 

A’, may turn out to be negative for positiveNo. This situation leads to a paradox. In the 

more complicated cases it may be that the equations similar to (1.3) and (1.5) have several 

solutions. Since analysis of such general equations is quite a complex matter, we impose 

limitations 2.1 ,....2.4, on the properties of their solutions and are then able to proceed 

with our proof. 

Such problems invariably arise in the investigation of the motion of a solid object on a 

rough surface. In the absence of sliding we have the familiar nonholonomic problem. The 

solutions of this problem afford a good description of the actual state of affairs only if any 

small sliding motion due to causes not considered vanishes after a short time. 

2. Let us consider a mechanical system subject to stationary holonomic ideal con- 

straints with the holonomic coordinates ql, . . ., qn+l+,c, and with aonholonomic stationary 

(aAij / at = 0) ideal constraints 

(s = 1, . . .) k) 

with the possible displacements defined by 

A,$91 + * * * + 4*n+l+k*Qn+l+k = 0 (s = 1, . . .) k) 

Further, let the system be subject to the liberating constraints with dry friction 

If these inequalities become equations, the bodies or points of the system slide along 

the bodies of the system or external bodies; the frictional force is proportional to the 

normal reaction Ni > 0 and is directed opposite to the relative velocity of the sliding mo- 

tion (Ni > 0 if the bodies exert pressure on one another). At each point of contact on one 

of the bodies we fix a triplet of axes with the xi -axis directed along the exterior normal 

and the xi - and yi -axes rendering the triplet right-handed and rectangular. Then the work 

performed by the reaction Ni and the frictional force over a possible displacement 

6x,, 6y,, 6zi of a point on the second body relative to this system is 

Ni’zi - kiNi 5 62, - kiNi 2 6yi 
1 1 

where uix , U’ are the projections of the relative sliding velocity Vi on the xi - and 

yi -axes and i: > 0 is the coefficient of friction. 

Let qnil = . . . = qn+l = qnll = . . * . = Q,,+~ = 0 be the initial conditions. We con- 

sider the complete system of nonholonomic variables 

Let Virt viy v viz be the components of the possible relative velocity of a point on one 

of the bodies that are in contact relative to the system xi, yi, ai ; these components may 

be expressed in terms of vl, . . ., L’,+~ as 

‘ix == ailrYl + . . . -f- ai I,+lt.~n+l, ‘iy = Q2h + . . . + ai2n+lUn+i, 

‘i.7 = ai3nL’,+1 f . . . + ai3,+lV,+I 



664 C. K. Potharitrkii 

We note that the same formalne may be ased to express the displacements 6xi, 6yi, 

8x1 in terma of the possible displacements v,~T, . . . , u,,& . 

At t I 0, let there be some zero velocities ~,+~,o = . . . = vpo = 0,among the initial 

relative sliding velocities via, . . ,, vpo all the rest of the latter being non-zero. Also, let 

Rfx, Rtu (i = v + 1, . . ., p) be the projections of the tangential reactions on the xi - and 

yi -axem. Denoting the energy of accelerations of the system by 

u+l n+r 
S = x api'vj' + x bjvj’ = S, + S, 

ij-1 j=i 

and_ the stationary and continaoum generalized forces by Q1, . . ., Qo+l we find that the 

eqaationa of motion become 

+ 2 (aij'Ri% + aivsRiv f aijsNJ = Pj 
t=v+1 

Denoting the right-hand aidesof this mystem by Pi , we determine qj”, ujr’, viy’ from 

theno equatfonm and met the former equal to zero, 

Qj” = Tlipl + * . * + Tn+l,jPn+l = O (i = n + 1, . . ., n + 1) 

vjr * = &jP, + . * * + ba+t,pn+r = 0 (i = v + I, . . .) p) 

%d * = 0,jP1 + s e e + %+Z,jPn+l = 0 (i=v+i,...,p) (2*2) 

The resulting system of eqaations enablesas to determine the normal reactions and 

frictional forces. 

Now let S+ - S, where qj;‘, ujx’, t’u,‘; are set equal to zero; let Q1*, . . ., Q,* be the 

generalized forcea that corraapond to the independent nonholonomic variable6 I.~‘, . . ., L’~’ 

in a symtem snbject to the additional ideal constraints q; = ujr = v,!, = 0 (some of which 

may be nonholonomic). 

Omitting the primes in the coefficients oij”, a$’ we write the equations 

&S,* 
avj’ 

= bj* + Qj’ + =$ (_ kiNi a;;;a;;;:” ) (2.3) 

i=l 

Let us also introdace some additional hypothesis about the properties of the reaction, 

91 U’jv qi, .Qi’* Qi) = . . . = qr = 0 (2.4) 

An example of such a hypothesis ia the supposition that a heavy homogeneous stool 

subjected to the action of force0 applied in the rough plane surface of its support exerts 

aqaal normal pressure8 on that sorface at all four of its points of support. 

Let as aaamme that system (2.2) - (2.4) poseeases the following properties: 

2.1. All the normal preasares N,, . . ., N 

the given initial conditions system (2.2), (2.4Pd 

can be set negative. This means that under 

oerr not imply that a normal reaction neces- 

sarily a&es at mome point of contact. 
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2.2. System (2.2), (2.4) enables one to determine unambiguously all the linear combi- 

nations of N,, . . ., N, that occur on the right-hand sides of equations (2.3). 

2.3. On the basisof any system NV+,, . . ., N, it is possible to choose the tangential 

reactions Rix, R. ‘y such that (2.2), (2.4) and the inequalities 

kiNi > l/Riiz + Ril,” f c (c = const > 0) (2.5) 

are jointly satisfied. 

Inequalities (2.5) signify that the absolute value of the tangential reactionis less than 

that of the maximum possible reaction. 

If conditions 2.1, 2.2, 2.3 are satisfiedunder the given initial conditions, subsequent 

motion occurs in accordance with equations (2.3) taken in conjunction with the equationa of 

the nonholonomic constraints of the initial system and the equations 

q nil = . . . = Qn+[ = 0, “jx 
EUiuE() (j = Y + 1, . . .( p) 

2.4. Let us assume now that systems (2.2) - (2.4) which follow from the definition of 

motion also satisfy conditions 2.1, 2.2, 2.3 for any xi0 = qio’ - qio, zio’ = qi,,” - qi,‘, 
sufficiently small in absolute value but not so small as to make all the v,+~, . . ., vp, 
vanish. In addition, the reactions N:+l, . . ., Np’, corresponding to these initial conditions 

satisfy the inequalities 

kiNi’> VRi,” + Riy’ + c 

where Rix, R. ry are the reactions corresponding to the initial conditions as regards Qi,, Q~,,‘. 

All of the foregoing limitations guarantee the existence of some region 

2 xi2 + x xi.” < H 

such that if any of the sliding velocities I*~+~, . . ., t’p are set equal to zero at t = 0 in H , 

they will remain equal to zero at least until such time as the motion goes beyond the region 

H. If assumptions 2.1, . . ., 2.4 are fulfilled, we say that the variables l’i,x, I>i!, (i = 

v -t 1, . . a1 P) , are at an interior point of the stagnation zone. 

Let us consider a system of initial conditionsunder which none of the relative veloci- 

ties v,+~, . . ., vp is equal to zero and take as our LS~+~, . . . , un’some internally indepen- 

dent system chosen from among rilr ui,, (i = Y -I- 1, . . ., p). Computing I;~‘., . . ., uo” 
?. 

in terms of rail, . . ., L.~” from the first D equationsof system (2.3) and substituting these 

expressions into the last n - r~ equations, we obtain the following system: 

where the sum in the left-hand side is a positive definite quadratic form relative to 

(5 + 1, . . ., n) . This form is the end result of equating to zero thelinear forms 

a n . . 
7 

t3Vj (2 5ijVi Vj = ) 
o 

(i = 1, . . ., a) 
ii =I 

(2.6) 

(2.7) 
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in the quadratic portion of the energy of the system accelerations 

For j = r~ + 1, . . ., n, the quantities “ia, Oir can be expressed solely in terms of 

z’o+1, * - -1 v,,; this means that frictional forces at points with the subscripts v + 1, . . ., p 
do not appear in the first CT equations, and therefore that their right-hand sides depend 

continuously on their arguments in the neighborhood of 

v.,il . . . v17 -= 0 

‘fhus, upon isolating ui (th e constant term on the right-hand sidesof the equations 

obtained by substitution), we can convert these equations to the form (2.6). 

The tangential reactions Rix, Riy satisfy the equations 

for the initial values 
. 

QiOl qi”7 vy41,0 = * * *= V po = 0 

Multiplying each equation of (2.6) by vi ‘, adding, and taking into account (2.1) and 

(2.7). we obtain 

i=v+1 

Noting that the cii depend solely on the coordinates, we find that this equation may 

be represented as 

$ $ i cijuiuj = - i [kiNi 1/uix2 + uii’ + (Rix_i. i;i,) L’ir + (H;,, + Ai,,) t,i,,] 

i=v-+I 

where all the hi,, Xi, vanish if zi = 0, Zi’= 0. 

We now show that the region H can always be taken so small that the inequality 

- i [kiNi Vutrr $- uiy2 $_ (RLX + &x) vix + tRi, + hg) uiul < - @ p/T, 
i=v+l 

n 

TO=+ 2 Ci,Ui Vj 

ij=afl 

ia aatisfisd everywhere within it. 

Let UB denote by kNi, the lower boundsof the quantity kNi and by hix’, hi,” the 

upper bonnda of ) &, 1, 1 hi, 1 in the region H. It is clear that no term on the left-hand side 

exceeds the expreaaion 

- [ (kiNi, - &x0 - %I/“) I/uixa + uiya + Ri.xuix t Ri,Vi!,l 
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This expression is negative, provided that 

(Rixvtx + Rij,vi,)‘< (k,N,, - hi,’ - hi!,?* (~~is2 + 41jY2 

for which it is sufficient that the condition 

be satisfied. 

Ri,2 + Ri,’ < (IslVio - &x0 - hi”‘)’ 

This condition is clearly satisfied if (2.4) holds true end the region H is sufficiently 

smell. 

Denoting by - y the negative maximum of the sum 

@ = - i [(k!Vi” - hix” - &“) VVis” + Vi!12 + Hirvix + Ri,vi,l 

i=v+l 

in the region H which is attained for v:+~, . . ., v,,*, end bearing in mind that cb is homo- 

geneous relative to velocities, we find that the inequality 

_ ~ > r 1/v:+, + . . . + h2 
>WT, (e = const > 0) 

I/ I& + . . . + L(f 

is satisfied everywhere in the region H. 

Integrating the inequality 

dT, / dt <-@ I/TO 

we obtain 

For any region H end any constant x < H we can find a number t* (AH)>O, such that 

the time t - t0 required for the system of initial conditions 2 ZZ+,,~ + zio2< h to leave the 

region exceeds t* (AH ). This implies that for all initial conditions for which 

I/ll’,” - ‘/@t* (1, H) < 0 

all voT1, . . ., v, vanish et the end of the time t - t, < t* end subsequent motion proceeds 

according to equations (2.3) until the system leaves the region H. 

Let us formulate our final conclusions in the form of a theorem. 

Theorem. (1) If the portion of the system corresponding to the variables ~o+~, . . ., v,, 
is et an interior point of the stagnation zone under certain initial conditions, andif the 

region 

x xi’ + xi” < H, vo+l = . . . = v, = 0 

consists entirely of interior points of this zone, then for any x < H it is possible to find a 

h, (A, H ) such that for any initial conditions, motion from the region 

2 xi02 + Xio’2 < I-I, i Vi O2 < Al 
i=3+1 

until emergence from the region H occurs in two stages: in the first stage some of the rela- 

tive sliding velocities arenot equal to zero; in the second stage, which begins no later than 
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a time t - to = 2W’ I/ Too, all sliding velocities remain equal to zero until the motion 

leaves the region H. 

(2) If the motion qi (t) beginning under the initial conditions qi,, qi,,‘, L‘;+~,~ -- . . . 

. . . =I&() = 0, always remains at an interior point of the stagnation zone and is a 

stable solution of system (2.3) in conjunction with the equations (I,,+~ , = qlLFI -7 

Vo+l = . . . = u, = 0 (i.e. if the solution Qi (I) is the stable motion of the initial sys- 

tem limited by theindicated additional constraints), then any disturbed motion of the initial 
. . . . 

system wth alAng velocities sufficiently small in absolute value after a finite time inter- 

val becomes themotionof a system subject to additional constraints; the duration of the 

transient process tends to zero as T,,, -_, 0. 
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